

18th

Monthly Meetup

Thursday, August 24 | UST Global, Trivandrum

<mark>Show of Hands</mark>

Should I skip the intro?

History of Bitcoin

- 2009
- Satoshi Nakamoto
- Bitcoin
- Cryptocurrency
- Blockchain

Blockchain: Definition

A datastore that is:

- Tamper-proof
- Decentralized
- Uncensorable
- Slow

• Rakesh BS

- Co-founder of **Qucentis** & **BIGOrg**
- Currently building a Blockchain based product

- Blockchain data structure
- Consensus protocol

- Linked list of hash pointers
- Tamper-proof

Cryptographic Hash Functions

- Collision resistant
- Non-reversible
- Efficient
- Variable length input
- Fixed length output

<mark>Hash Pointers</mark>

- Hash used as **reference** to data
- Ensures data is **tamper-proof**

- Linked list of hash pointers
- Tamper-proof

Consensus Protocol (Bitcoin)

- **Mining** Process of adding new blocks
- Every node solves a **puzzle** and submits **Proof-of-Work**
- Winner gets the right to add a new block
- Winner gets the block reward

<mark>A Fork in the Chain</mark>

- Two nodes can produce blocks around the **same time**
- For a few block intervals, there might be **two** versions of the blockchain
- Mining is a random process
- All nodes follow the **longest chain** the chain with the **largest amount of work** done
- Wait **7** blocks for **confirmation**

Block 4 (N2)

<mark>An Attack Scenario</mark>

- A rogue node tries to replace a block
- All nodes follow the **longest chain**
- The **collective computing power** of the network will always be much higher than a single rogue node
- Hence have to redo all work done after the block

Original Blocks

• Nikhil Mohan

• Co-founder, Lightrains

<mark>Hyperledger: A First Look</mark>

- Open source collaborative hosted by The Linux Foundation including leaders in:
 - \circ Finance
 - \circ Banking
 - Internet of Things
 - Supply chains
 - Manufacturing
 - Technology

<mark>3 Big Points</mark>

- Trust
- Data privacy
- Auditability

<mark>Architecture</mark>

Ethereum v/s Hyperledger

Characteristic	Ethereum	Hyperledger Fabric
Mode of operation	Permissionless, public or private	Permissioned, private
Consensus	 Mining based on proof-of-work (PoW) Ledger level 	 Broad understanding of consensus that allows multiple approaches Transaction level
Smart contracts	Smart contract code (e.g., Solidity)	Smart contract code(e.g., Go, Java), known as chaincode
Currency	EtherTokens via smart contract	NoneCurrency and tokens via chaincode

<mark>A Use Case</mark>

Problem

- You own a **logistics** company
- You and I are on a blockchain with different entities markets, shippers etc.
- We make a deal at a **lower price** than the market norm
- **Everybody** sees

<mark>A Use Case</mark>

Solution: Hyperledger Fabric

- First send transaction to peer
- Peers generate a result for transaction agreement both peers need to generate the same result
- Then send to **consensus crowd** for ordering
- The order crowd sends **transaction back to peers** and added to ledger
- The parties don't need to know about our special price.

Blockchain Interest Group

Thank you for your attention